Author:
Xu Yan,Wu Fengqin,Liao Liangwen
Abstract
Let f be a transcendental meromorphic function on the complex plane ℂ, let a be a non-zero finite complex number and let n and k be two positive integers. In this paper, we prove that if n≥k+1, then $\smash{f+a(f^{(k)})^n}$ assumes each value b∈ℂ infinitely often. Also, the related normal criterion for families of meromorphic functions is given. Our results generalize the related results of Fang and Zalcman.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献