Tumour microenvironment: a non-negligible driver for epithelial−mesenchymal transition in colorectal cancer

Author:

Han Lei,Wang Shuyi,Wei Chen,Fang Yan,Huang Sihao,Yin Tailang,Xiong Bin,Yang ChaogangORCID

Abstract

Abstract Cancer remains the leading cause of death worldwide, and metastasis is still the major cause of treatment failure for cancer patients. Epithelial–mesenchymal transition (EMT) has been shown to play a critical role in the metastasis cascade of epithelium-derived carcinoma. Tumour microenvironment (TME) refers to the local tissue environment in which tumour cells produce and live, including not only tumour cells themselves, but also fibroblasts, immune and inflammatory cells, glial cells and other cells around them, as well as intercellular stroma, micro vessels and infiltrated biomolecules from the nearby areas, which has been proved to widely participate in the occurrence and progress of cancer. Emerging and accumulating studies indicate that, on one hand, mesenchymal cells in TME can establish ‘crosstalk’ with tumour cells to regulate their EMT programme; on the other, EMT-tumour cells can create a favourable environment for their own growth via educating stromal cells. Recently, our group has conducted a series of studies on the interaction between tumour-associated macrophages (TAMs) and colorectal cancer (CRC) cells in TME, confirming that the interaction between TAMs and CRC cells mediated by cytokines or exosomes can jointly promote the metastasis of CRC by regulating the EMT process of tumour cells and the M2-type polarisation process of TAMs. Herein, we present an overview to describe the current knowledge about EMT in cancer, summarise the important role of TME in EMT, and provide an update on the mechanisms of TME-induced EMT in CRC, aiming to provide new ideas for understanding and resisting tumour metastasis.

Publisher

Cambridge University Press (CUP)

Subject

Molecular Biology,Molecular Medicine

Reference131 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3