Comprehensive Molecular Analyses of an M2-Like Tumor-Associated Macrophage for Predicting the Prognosis and Immunotherapy in Breast Cancer

Author:

Chang Kexin1,Yue QingFang2,Jin Long3,Fan Pengyu14,Liu Yi2,Cao Fei2,Zhang Yuan2

Affiliation:

1. Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China

2. Department of Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China

3. Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China

4. Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an, China

Abstract

The involvement of M2-like tumor-associated macrophages (TAMs) in the advancement and treatment of cancer has been widely documented. This study aimed to develop a new signature associated with M2-like TAMs to predict the prognosis and treatment response in individuals diagnosed with breast cancer (BC). Weighted gene co-expression network analysis (WGCNA) was used to identity for M2-like TAM-related modular genes. The M2-like TAM-related modular subtype was identified using unsupervised clustering. WGCNA identified 722 M2-like TAM genes, 204 of which were associated with recurrence-free survival (RFS). Patients in cluster 1 exhibited upregulated cancer-related pathways, a higher proportion of triple-negative breast cancer (TNBC) subtypes, lower expression of immune checkpoints, and worse prognosis. Cluster 2 was characterized by upregulated immune-related pathways, a higher proportion of luminal A subtypes, and higher expression of immune checkpoints. A prognostic signature was created and confirmed using an independent dataset. A well-built nomogram can accurately forecast the survival outcomes for every individual. Furthermore, patients classified as low-risk exhibited a more favorable outlook, elevated tumor microenvironment (TME) score, and superior reaction to immunotherapy. In conclusion, we discovered 2 different types of M2-like TAMs and developed a prognostic signature revealing the diversity of M2-like TAMs in BC and their correlation with immune status and prognosis. This feature can predict the prognosis and immunotherapeutic effects of BC and offer novel concepts and approaches for tailoring BC treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3