HRNN4F: HYBRID DEEP RANDOM NEURAL NETWORK FOR MULTI-CHANNEL FALL ACTIVITY DETECTION

Author:

Tahir AhsenORCID,Ahmad Jawad,Morison Gordon,Larijani HadiORCID,Gibson Ryan M.,Skelton Dawn A.

Abstract

Falls are a major health concern in older adults. Falls lead to mortality, immobility and high costs to social and health care services. Early detection and classification of falls is imperative for timely and appropriate medical aid response. Traditional machine learning models have been explored for fall classification. While newly developed deep learning techniques have the ability to potentially extract high-level features from raw sensor data providing high accuracy and robustness to variations in sensor position, orientation and diversity of work environments that may skew traditional classification models. However, frequently used deep learning models like Convolutional Neural Networks (CNN) are computationally intensive. To the best of our knowledge, we present the first instance of a Hybrid Multichannel Random Neural Network (HMCRNN) architecture for fall detection and classification. The proposed architecture provides the highest accuracy of 92.23% with dropout regularization, compared to other deep learning implementations. The performance of the proposed technique is approximately comparable to a CNN yet requires only half the computation cost of the CNN-based implementation. Furthermore, the proposed HMCRNN architecture provides 34.12% improvement in accuracy on average than a Multilayer Perceptron.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Reference44 articles.

1. Martins, A. & Astudillo, R. (2016). From softmax to sparsemax: A sparse model of attention and multi-label classification. In International Conference on Machine Learning, pp. 1614–1623.

2. Learning in the Recurrent Random Neural Network

3. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry

4. Tian, Y. , Thompson, J. , Buck, D. , & Sonola, L. (2013). Exploring the system-wide costs of falls in older people in Torbay. King's Fund.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3