Molecular characterization of QTL-allele system for drought tolerance at seedling stage and optimal genotype design using multi-locus multi-allele genome-wide association analysis in a half-sib population of soybean (Glycine max (L.) Merr.)

Author:

Khan Mueen Alam,Tong Fei,Wang Wubin,He Jianbo,Zhao Tuanjie,Gai JunyiORCID

Abstract

AbstractCharacterizing the whole genetic architecture of drought tolerance (DT) is a persistent challenge for the breeders. Here we developed a half-sib population comprising of 404 lines of two recombinant inbred line (RIL) populations with M8206 as the joint parent (M8206 × TongShan and ZhengYang × M8206) and tested for its DT under sand culture. The population was sequenced using restriction-site-associated DNA sequencing filtered with minor allele frequency ≥0.01; 55,936 single nucleotide polymorphisms (SNPs) were obtained and assembled into 6137 SNPLDBs (SNP linkage disequilibrium blocks). The restricted two-stage multi-locus genome-wide association analysis characterized with error and false-positive control identified 40 QTLs with 93 alleles on an average of 34.75% of the phenotypic variance (PV) collectively for relative root length (RRL) and relative shoot length (RSL) that served as potential DT indicators. Among these, eight loci corresponded to previously reported QTLs, whereas 32 loci were therefore novel. The identified QTLs with their corresponding alleles for RRL and RSL were organized into QTL-allele matrices, depicting the comprehensive DT genetic architecture of the three parents/half-sib population. From the matrices, we predicted the possible best/optimal genotype with weighted average value (WAV) 1.553 over two indicators, while for the top 10 single crosses among RILs with 95th percentile WAV was 1.218–1.257, transgressive over the parents (0.693–0.794) yet much less than 1.553. From the detected QTL-allele system, 65 potential candidate genes collectively for both indicators explaining on an average of 24.41% PV were annotated and χ2-tested as a DT candidate gene system involving nine biological processes.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3