Evaluation of smart spray technology for postemergence herbicide application in row middles of plasticulture production

Author:

Buzanini Ana C.ORCID,Schumann ArnoldORCID,Boyd Nathan S.ORCID

Abstract

AbstractPostemergence herbicides used to control weeds in the space between raised, plastic-covered beds in plasticulture production systems are typically banded, and herbicides are applied to weeds and to where weeds do not occur. To reduce the incidence of off-targeted applications, the University of Florida developed a smart-spray technology for row middles in plasticulture systems. The technology detects weed according to categories and applies herbicides only where the weeds occur. Field experiments were conducted at the Gulf Coast Research and Education Center in Balm, FL, in fall 2021 and spring 2022. The objective was to evaluate the efficacy of postemergence applications of diquat and glyphosate in row middles in jalapeno pepper fields when banded or applied with smart-spray technology. The overall precision of the weed detection model was 0.92 and 0.89 for fall and spring, respectively. The actuation precision achieved was 0.86 and 1 for fall and spring, respectively. No significant differences were observed between banded and targeted applications either with glyphosate or diquat in terms of broadleaf, grass, and nutsedge weed density. No significant pepper damage was observed with either herbicide or application technique. The smart-spray technology reduced herbicide application volume by 26% and 42% in fall and spring, respectively, with no reduction in weed control or pepper yield compared to a banded application. Overall, the smart-spray technology reduced the herbicide volume applied with no reductions in weed control and no significant effects on crop yield.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3