Design and Development of a Smart Variable Rate Sprayer Using Deep Learning

Author:

Hussain Nazar,Farooque Aitazaz,Schumann Arnold,McKenzie-Gopsill AndrewORCID,Esau Travis,Abbas FarhatORCID,Acharya Bishnu,Zaman Qamar

Abstract

The uniform application (UA) of agrochemicals results in the over-application of harmful chemicals, increases crop input costs, and deteriorates the environment when compared with variable rate application (VA). A smart variable rate sprayer (SVRS) was designed, developed, and tested using deep learning (DL) for VA application of agrochemicals. Real-time testing of the SVRS took place for detecting and spraying and/or skipping lambsquarters weed and early blight infected and healthy potato plants. About 24,000 images were collected from potato fields in Prince Edward Island and New Brunswick under varying sunny, cloudy, and partly cloudy conditions and processed/trained using YOLOv3 and tiny-YOLOv3 models. Due to faster performance, the tiny-YOLOv3 was chosen to deploy in SVRS. A laboratory experiment was designed under factorial arrangements, where the two spraying techniques (UA and VA) and the three weather conditions (cloudy, partly cloudy, and sunny) were the two independent variables with spray volume consumption as a response variable. The experimental treatments had six repetitions in a 2 × 3 factorial design. Results of the two-way ANOVA showed a significant effect of spraying application techniques on volume consumption of spraying liquid (p-value < 0.05). There was no significant effect of weather conditions and interactions between the two independent variables on volume consumption during weeds and simulated diseased plant detection experiments (p-value > 0.05). The SVRS was able to save 42 and 43% spraying liquid during weeds and simulated diseased plant detection experiments, respectively. Water sensitive papers’ analysis showed the applicability of SVRS for VA with >40% savings of spraying liquid by SVRS when compared with UA. Field applications of this technique would reduce the crop input costs and the environmental risks in conditions (weed and disease) like experimental testing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3