Experimental determination of the instrumental broadening in the Bragg–Brentano geometry

Author:

Scardi P.,Lutterotti L.,Maistrelli P.

Abstract

A simple procedure was devised for the preparation of a standard KCl powder to be used for the experimental determination of the instrumental profile in the Bragg–Brentano geometry. The standard was tested on several diffractometers, and narrow Bragg reflections in the range 28°–132° were recorded adopting various experimental conditions. Profiles were modeled with analytical functions, to describe the trend of width and shape of the instrumental profile as a function of the diffraction angle. Some indications were given to perform reliable profile fitting and line broadening analysis; a high resolution setup, obtained by employing narrow slits, large goniometer radius, and a monochromator in the diffracted beam, gives narrow reflections, even though the intensity of the diffracted beam is considerably reduced. The choice of these experimental conditions, which can be achieved using the majority of the commercial instruments, leads to symmetrical profiles, even at relatively low angle (2Θ=28°), which are highly recommended for reliable profile fitting and line broadening analysis.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3