Digestion of invertebrate neuropeptides by preparations from the free-living nematodePanagrellus redivivus

Author:

Masler E.P.

Abstract

AbstractProteases in the soluble fraction of homogenates prepared from the free-living nematodePanagrellus redivivushydrolysed the amidated invertebrate neuropeptides FMRFa and FLRFa, and nematode FMRFa-like peptides (FLPs) KPNFLRFa (FLP-1-H), APKPKFIRFa (FLP-5-A), KNEFIRFa (FLP-8), KPSFVRFa (FLP-9), RNKFEFIRFa (FLP-12) and KHEYLRFa (FLP-14)in vitro. Results were assessed by analysing reaction components with RP-HPLC, UV detection at 210 nm and peak integration. Based upon substrate peak size, more than 90% of most of the peptide substrates was consumed after 1 h at 27°C, but digestion was not complete even with a crude protease mixture. Two peptides, FLP-12 and FLP-14, were significantly less susceptible to digestion than the others. FLP-12 was the least susceptible of all sequences (71% loss;P < 0.0001), while FLP-14 was digested less (84% loss;P < 0.0004) than all but FLP-12. Product peak digestion patterns of FLP-12, a second nonapeptide (FLP-5-A), and FMRFa, incubated with aminopeptidase (amastatin) and serine endoprotease (AEBSF) inhibitors, demonstrated highly specific behaviours of each sequence to protease cleavage. Amastatin significantly (P < 0.03) reduced digestion of FLP-12 (54% loss) and FMRFa (61% loss;P < 0.0005), but had no effect on FLP-5-A. AEBSF had no protective effect on FMRFa but significantly decreased hydrolysis of FLP-5-A (77% loss;P < 0.0001) and FLP-12 (59% loss;P < 0.03). The combination of both inhibitors had additive effects only for FMRFa (34% loss;P < 0.0005). Further analysis of FMRFa digestion using peptides withd-amino acid substitutions demonstrated nearly complete protection of FdMRFa (2% loss;P < 0.0001) from all proteolytic digestion, whereas digestion of FMRdFa was complete. Results suggest that in addition to aminopeptidase and serine proteases, both deamidase and aminopeptidase P participate in neuropeptide metabolism inP. redivivus.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3