Abstract
We introduce a path theoretic framework for understanding the representation theory of (quantum) symmetric and general linear groups and their higher-level generalizations over fields of arbitrary characteristic. Our first main result is a ‘super-strong linkage principle’ which provides degree-wise upper bounds for graded decomposition numbers (this is new even in the case of symmetric groups). Next, we generalize the notion of homomorphisms between Weyl/Specht modules which are ‘generically’ placed (within the associated alcove geometries) to cyclotomic Hecke and diagrammatic Cherednik algebras. Finally, we provide evidence for a higher-level analogue of the classical Lusztig conjecture over fields of sufficiently large characteristic.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献