Author:
Bowman C.,Norton E.,Simental J.
Abstract
AbstractWe provide a homological construction of unitary simple modules of Cherednik and Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch–Griffeth–Sam. We vastly generalize the conjecture and its solution to cyclotomic Cherednik and Hecke algebras over arbitrary ground fields, and calculate the Betti numbers and Castelnuovo–Mumford regularity of certain symmetric linear subspace arrangements.
Funder
Max Planck Institute for Mathematics
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference65 articles.
1. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of $${\mathfrak{g}}$$-modules, 21–64
2. Bessenrodt, C., Olsson, J.B.: On residue symbols and the Mullineux conjecture. J. Algebraic Combin. 7, 227–251 (1998)
3. Bezrukavnikov, R., Etingof, P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. (N.S.) 14, 397–425 (2009)
4. Boe, B., Hunziker, M.: Kostant modules in blocks of category $${\mathscr {O}}_S$$. Commun. Algebra 37, 323–356 (2009)
5. Bowman, C.: The many graded cellular bases of Hecke algebras, to appear in Amer. J. Math. arXiv:1702.06579
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献