An evaluation of the Gompertz model in degradability studies of forage chemical components

Author:

Lavrenčič A.,Stefanon B.,Susmel P.

Abstract

AbstractThe in situ dry matter (DM) and neutral-detergent fibre (NDF) degradability kinetics of eight forages (four grass hays and four legume hays, harvested at two different dates) were compared to assess the fitting ability of a first-order and a Gompertz model.The Gompertz model fitted DM degradability data as well as the first-order model and differences between fitted and observed data for the two models were very small but the Gompertz model proved to be statistically superior for the NDF degradability data, especially for the early hours of incubation.A numerical but not significant difference was observed in the estimated rapidly available fraction for DM and NDF, which zvas respectively lower (mean values 24·4 v. 27·8%) and higher (mean values 5·8 v. 1·8%) with the first-order model. More pronounced differences were observed for the estimates of total potential degradability of NDF, which were often significantly lower with the Gompertz model (average values for the eight forages 75·1 v. 72·3%;.The sigmoidal shape of the Gompertz model was more biologically appropriate to describe the initial phases of NDF degradation and was thus applied to the cellulose and hemicellulose degradability data.As the harvesting date progressed through the season, a decrease of the immediately available fraction of DM and nitrogen was generally observed but the effect of harvesting date was not so evident for fibre fractions; the differences within forages were very low. Correlation coefficients between lignin content and total potential degradability of fibre were always high (for NDF, r = −0·96; for hemicellulose r = −0·95; for cellulose r = −0·79; P < 0·001), while the acid-detergent fibre content influenced DM and nitrogen total potential degradability (r = −0·91 and −0·82, respectively).

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3