Sparse Estimation and Uncertainty with Application to Subgroup Analysis

Author:

Ratkovic Marc,Tingley Dustin

Abstract

We introduce a Bayesian method, LASSOplus, that unifies recent contributions in the sparse modeling literatures, while substantially extending pre-existing estimators in terms of both performance and flexibility. Unlike existing Bayesian variable selection methods, LASSOplus both selects and estimates effects while returning estimated confidence intervals for discovered effects. Furthermore, we show how LASSOplus easily extends to modeling repeated observations and permits a simple Bonferroni correction to control coverage on confidence intervals among discovered effects. We situate LASSOplus in the literature on how to estimate subgroup effects, a topic that often leads to a proliferation of estimation parameters. We also offer a simple preprocessing step that draws on recent theoretical work to estimate higher-order effects that can be interpreted independently of their lower-order terms. A simulation study illustrates the method’s performance relative to several existing variable selection methods. In addition, we apply LASSOplus to an existing study on public support for climate treaties to illustrate the method’s ability to discover substantive and relevant effects. Software implementing the method is publicly available in theRpackagesparsereg.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference81 articles.

1. Subgroup analysis via recursive partitioning;Su;Journal of Machine Learning Research,2009

2. Strezhnev, Anton , Jens Hainmueller , Daniel Hopkins , and Teppei Yamamoto . 2014. cjoint: AMCE estimator for conjoint experiments. R package version 1.0.3.

3. Stewart, Brandon M. Latent factor regressions for the social sciences. Working Paper.

4. On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3