Author:
Medvedev Alexey,Pete Gábor
Abstract
Abstract
One model of real-life spreading processes is that of first-passage percolation (also called the SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with independent and identically distributed heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow due to bottleneck edges with huge passage times. Here we consider the SI model with passage times following a power-law distribution ℙ(ξ>t)∼t-α with infinite mean. For any finite connected graph G with a root s, we find the largest number of vertices κ(G,s) that are infected in finite expected time, and prove that for every k≤κ(G,s), the expected time to infect k vertices is at most O(k1/α). Then we show that adding a single edge from s to a random vertex in a random tree 𝒯 typically increases κ(𝒯,s) from a bounded variable to a fraction of the size of 𝒯, thus severely accelerating the process. We examine this acceleration effect on some natural models of random graphs: critical Galton--Watson trees conditioned to be large, uniform spanning trees of the complete graph, and on the largest cluster of near-critical Erdős‒Rényi graphs. In particular, at the upper end of the critical window, the process is already much faster than exactly at criticality.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献