Abstract
Abstract
Detecting sets of relevant patterns from a given dataset is an important challenge in data mining. The relevance of a pattern, also called utility in the literature, is a subjective measure and can be actually assessed from very different points of view. Rule-based languages like Answer Set Programming (ASP) seem well suited for specifying user-provided criteria to assess pattern utility in a form of constraints; moreover, declarativity of ASP allows for a very easy switch between several criteria in order to analyze the dataset from different points of view. In this paper, we make steps toward extending the notion of High-Utility Pattern Mining; in particular, we introduce a new framework that allows for new classes of utility criteria not considered in the previous literature. We also show how recent extensions of ASP with external functions can support a fast and effective encoding and testing of the new framework. To demonstrate the potential of the proposed framework, we exploit it as a building block for the definition of an innovative method for predicting ICU admission for COVID-19 patients. Finally, an extensive experimental activity demonstrates both from a quantitative and a qualitative point of view the effectiveness of the proposed approach.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Reference48 articles.
1. High-Utility Pattern Mining
2. Guns, T. , Paramonov, S. and Négrevergne, B. On declarative modeling of structured pattern mining. In Proc. of the 2016 AAAI Workshop Declarative Learning Based Programming 2016, volume WS-16-07 of AAAI Workshops. AAAI Press.
3. An efficient algorithm for mining high utility patterns from incremental databases with one database scan
4. Shen, Y. , Zhang, Z. and Yang, Q. Objective-oriented utility-based association mining. In Proc. of the 2002 IEEE International Conference on Data Mining (ICDM 2002). IEEE Computer Society, 426–433.
5. Community-Based Semantic Subgroup Discovery
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献