Conflict-Driven Inductive Logic Programming

Author:

LAW MARKORCID

Abstract

AbstractThe goal of inductive logic programming (ILP) is to learn a program that explains a set of examples. Until recently, most research on ILP targeted learning Prolog programs. The ILASP system instead learns answer set programs (ASP). Learning such expressive programs widens the applicability of ILP considerably; for example, enabling preference learning, learning common-sense knowledge, including defaults and exceptions, and learning non-deterministic theories. Early versions of ILASP can be considered meta-level ILP approaches, which encode a learning task as a logic program and delegate the search to an ASP solver. More recently, ILASP has shifted towards a new method, inspired by conflict-driven SAT and ASP solvers. The fundamental idea of the approach, called Conflict-driven ILP (CDILP), is to iteratively interleave the search for a hypothesis with the generation of constraints which explain why the current hypothesis does not cover a particular example. These coverage constraints allow ILASP to rule out not just the current hypothesis, but an entire class of hypotheses that do not satisfy the coverage constraint. This article formalises the CDILP approach and presents the ILASP3 and ILASP4 systems for CDILP, which are demonstrated to be more scalable than previous ILASP systems, particularly in the presence of noise.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference41 articles.

1. Inverse entailment and progol

2. Corapi, D. , Russo, A. , and Lupu, E. 2010. Inductive logic programming as abductive search. In Technical Communications of the 26th International Conference on Logic Programming, ICLP 2010, July 16-19, 2010, Edinburgh, Scotland, UK. LIPIcs, vol. 7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 54–63.

3. Sakama, C. 2000. Inverse entailment in nonmonotonic logic programs. In Inductive Logic Programming, 10th International Conference, ILP 2000, London, UK, July 24-27, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1866. Springer, 209–224.

4. Inductive logic programming

5. Learning programs by learning from failures

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embed2Rule Scalable Neuro-Symbolic Learning via Latent Space Weak-Labelling;Lecture Notes in Computer Science;2024

2. Online event recognition over noisy data streams;International Journal of Approximate Reasoning;2023-10

3. Inductive Learning of Declarative Domain-Specific Heuristics for ASP;Electronic Proceedings in Theoretical Computer Science;2023-09-12

4. A Direct ASP Encoding for Declare;Lecture Notes in Computer Science;2023

5. A Model-Oriented Approach for Lifting Symmetries in Answer Set Programming;Electronic Proceedings in Theoretical Computer Science;2022-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3