1. Aspis, Y., Broda, K., Lobo, J., Russo, A.: Embed2Sym - scalable neuro-symbolic reasoning via clustered embeddings. In: Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning, pp. 421–431, August 2022. https://doi.org/10.24963/kr.2022/44, https://doi.org/10.24963/kr.2022/44
2. Augustine, E., Pryor, C., Dickens, C., Pujara, J., Wang, W.Y., Getoor, L.: Visual sudoku puzzle classification: a suite of collective neuro-symbolic tasks. In: d’Avila Garcez, A.S., Jiménez-Ruiz, E. (eds.) Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning as part of the 2nd International Joint Conference on Learning & Reasoning (IJCLR 2022), Cumberland Lodge, Windsor Great Park, UK, September 28-30, 2022. CEUR Workshop Proceedings, vol. 3212, pp. 15–29. CEUR-WS.org (2022), https://ceur-ws.org/Vol-3212/paper2.pdf
3. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artificial Intelligence 303, 103649 (2022). https://doi.org/10.1016/j.artint.2021.103649, https://www.sciencedirect.com/science/article/pii/S0004370221002009
4. Charalambous, T., Aspis, Y., Russo, A.: Neuralfastlas: Fast logic-based learning from raw data (2023)
5. Cunnington, D., Law, M., Lobo, J., Russo, A.: Ffnsl: feed-forward neural-symbolic learner. Mach. Learn. 112(2), 515–569 (2023)