Embed2Sym - Scalable Neuro-Symbolic Reasoning via Clustered Embeddings

Author:

Aspis Yaniv1,Broda Krysia1,Lobo Jorge23,Russo Alessandra1

Affiliation:

1. Imperial College London

2. ICREA

3. Universitat Pompeu Fabra

Abstract

Neuro-symbolic reasoning approaches proposed in recent years combine a neural perception component with a symbolic reasoning component to solve a downstream task. By doing so, these approaches can provide neural networks with symbolic reasoning capabilities, improve their interpretability and enable generalization beyond the training task. However, this often comes at the cost of poor training time, with potential scalability issues. In this paper, we propose a scalable neuro-symbolic approach, called Embed2Sym. We complement a two-stage (perception and reasoning) neural network architecture designed to solve a downstream task end-to-end with a symbolic optimisation method for extracting learned latent concepts. Specifically, the trained perception network generates clusters in embedding space that are identified and labelled using symbolic knowledge and a symbolic solver. With the latent concepts identified, a neuro-symbolic model is constructed by combining the perception network with the symbolic knowledge of the downstream task, resulting in a model that is interpretable and transferable. Our evaluation shows that Embed2Sym outperforms state-of-the-art neuro-symbolic systems on benchmark tasks in terms of training time by several orders of magnitude while providing similar if not better accuracy.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3