A new algorithm to automate inductive learning of default theories

Author:

SHAKERIN FARHADORCID,SALAZAR ELMER,GUPTA GOPAL

Abstract

AbstractIn inductive learning of a broad concept, an algorithm should be able to distinguish concept examples from exceptions and noisy data. An approach through recursively finding patterns in exceptions turns out to correspond to the problem of learning default theories. Default logic is what humans employ in common-sense reasoning. Therefore, learned default theories are better understood by humans. In this paper, we present new algorithms to learn default theories in the form of non-monotonic logic programs. Experiments reported in this paper show that our algorithms are a significant improvement over traditional approaches based on inductive logic programming. Under consideration for acceptance in TPLP.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference31 articles.

1. Inverse entailment and progol

2. Knowledge Representation, Reasoning and Declarative Problem Solving

3. Gelfond M. and Lifschitz V. 1988. The stable model semantics for logic programming. In Proc. of the 5th International Conference and Symposium, Vol. 2, August 15–19, 1988. MIT Press, Seattle, Washington, 1070–1080.

4. Kowalski R. A. and Bowen K. A. , Eds. 1988. Logic Programming, Proceedings of the 5th International Conference and Symposium, Vol. 2, August 15–19, 1988. MIT Press, Seattle, Washington.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Assumption-Based Argumentation Frameworks;Lecture Notes in Computer Science;2024

2. ABA Learning via ASP;Electronic Proceedings in Theoretical Computer Science;2023-09-12

3. FOLD-SE: An Efficient Rule-Based Machine Learning Algorithm with Scalable Explainability;Lecture Notes in Computer Science;2023

4. Logic-Based Explainable and Incremental Machine Learning;Prolog: The Next 50 Years;2023

5. FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data;Theory and Practice of Logic Programming;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3