FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data

Author:

WANG HUADUOORCID,SHAKERIN FARHAD,GUPTA GOPAL

Abstract

AbstractFOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference31 articles.

1. A logic for default reasoning

2. Gunning, D. 2015. Explainable artificial intelligence (xai). URL: https://www.darpa.mil/program/explainable-artificial-intelligence [Accessed on June 2018].

3. Shakerin, F. 2020. Logic Programming-based Approaches in Explainable AI and Natural Language Processing. PhD thesis. Department of Computer Science, The University of Texas at Dallas.

4. Cropper, A. and Dumancic, S. 2020. Inductive logic programming at 30: A new introduction. URL: https://arxiv.org/abs/2008.07912

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fuzzy Twin Support Vector Machine Based on Dissimilarity Measure and Its Biomedical Applications;International Journal of Fuzzy Systems;2024-05-17

2. FOLD-SE: An Efficient Rule-Based Machine Learning Algorithm with Scalable Explainability;Lecture Notes in Computer Science;2023

3. Logic-Based Explainability in Machine Learning;Reasoning Web. Causality, Explanations and Declarative Knowledge;2023

4. ABALearn: An Automated Logic-Based Learning System for ABA Frameworks;AIxIA 2023 – Advances in Artificial Intelligence;2023

5. Logic-Based Explainable and Incremental Machine Learning;Prolog: The Next 50 Years;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3