Characterising equilibrium logic and nested logic programs: Reductions and complexity,

Author:

PEARCE DAVID,TOMPITS HANS,WOLTRAN STEFAN

Abstract

AbstractEquilibrium logic is an approach to non-monotonic reasoning that extends the stable-model and answer-set semantics for logic programs. In particular, it includes the general case ofnested logic programs, where arbitrary Boolean combinations are permitted in heads and bodies of rules, as special kinds of theories. In this paper, we present polynomial reductions of the main reasoning tasks associated with equilibrium logic and nested logic programs intoquantified propositional logic, an extension of classical propositional logic where quantifications over atomic formulas are permitted. Thus, quantified propositional logic is a fragment of second-order logic, and its formulas are usually referred to asquantified Boolean formulas(QBFs). We provide reductions not only for decision problems, but also for the central semantical concepts of equilibrium logic and nested logic programs. In particular, our encodings map a given decision problem into some QBF such that the latter is valid precisely in case the former holds. The basic tasks we deal with here are theconsistency problem,brave reasoningandskeptical reasoning. Additionally, we also provide encodings for testing equivalence of theories or programs under different notions of equivalence, viz.ordinary,stronganduniform equivalence. For all considered reasoning tasks, we analyse their computational complexity and give strict complexity bounds. Hereby, our encodings yield upper bounds in a direct manner. Besides this useful feature, our approach has the following benefits: First, our encodings yield auniform axiomatisationfor a variety of problems in a common language. Second, extant solvers for QBFs can be used as back-end inference engines to realise implementations of the encoded task in a rapid prototyping manner. Third, our axiomatisations also allow us to straightforwardly relate equilibrium logic with circumscription.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3