Beyond Uniform Equivalence between Answer-set Programs

Author:

Oetsch Johannes1ORCID,Seidl Martina2,Tompits Hans3,Woltran Stefan3

Affiliation:

1. Bosch Center for Artificial Intelligence, Germany, and Technische Universität Wien, Vienna, Austria

2. Johannes Kepler Universität Linz, Linz, Austria

3. Technische Universität Wien, Vienna, Austria

Abstract

This article deals with advanced notions of equivalence between nonmonotonic logic programs under the answer-set semantics, a topic of considerable interest, because such notions form the basis for program verification and are useful for program optimisation, debugging, and modular programming. In fact, there is extensive research in answer-set programming (ASP) dealing with different notions of equivalence between programs. Prominent among these notions is uniform equivalence , which checks whether two programs have the same semantics when joined with an arbitrary set of facts. In this article, we study a family of more fine-grained versions of uniform equivalence, viz. relativised uniform equivalence with projection , which extends standard uniform equivalence in terms of two additional parameters: one for specifying the input alphabet and one for specifying the output alphabet for programs. In particular, the second parameter is used for projecting answer sets to a set of designated output atoms. Answer-set projection, in particular, allows to compare programs that make use of different auxiliary atoms, which is important for practical programming aspects. We introduce novel semantic characterisations for the program correspondence problems under consideration and analyse their computational complexity. In the general case, deciding these problems lies on the third level of the polynomial hierarchy. Therefore, this task cannot be efficiently reduced to propositional answer-set programs itself (under the usual complexity-theoretic assumptions). However, reductions to quantified Boolean formulas (QBFs) are feasible. Indeed, we provide efficient (in fact, linear-time constructible) reductions to QBFs and discuss simplifications for certain special cases. These QBF reductions yield the basis for a prototype implementation, the system cc ⊤, for deciding correspondence problems by using off-the-shelf QBF solvers. We discuss an application of cc ⊤ for verifying the correctness of solutions by students drawn from a laboratory course on logic programming and knowledge representation at the Technische Universität Wien, employing relativised uniform equivalence with projection as the underlying program correspondence notion.

Funder

FWF projects “Formal Methods for Comparing and Optimizing Nonmonotonic Logic Programs”

“Methods and Methodologies for Developing Answer-set Programs”

“Treating Hard Problems with Decomposition and Dynamic Programming”

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking Answer Set Programming Templates;Practical Aspects of Declarative Languages;2023

2. Comparing the Reasoning Capabilities of Equilibrium Theories and Answer Set Programs;Algorithms;2022-06-08

3. Arguing Correctness of ASP Programs with Aggregates;Logic Programming and Nonmonotonic Reasoning;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3