Abstract interpretation of temporal concurrent constraint programs

Author:

FALASCHI MORENO,OLARTE CARLOS,PALAMIDESSI CATUSCIA

Abstract

AbstractTimed Concurrent Constraint Programming (tcc) is a declarative model for concurrency offering a logic for specifying reactive systems, i.e., systems that continuously interact with the environment. The universaltccformalism (utcc) is an extension oftccwith the ability to express mobility. Here mobility is understood as communication of private names as typically done for mobile systems and security protocols. In this paper we consider the denotational semantics fortcc, and extend it to a “collecting” semantics forutccbased on closure operators over sequences of constraints. Relying on this semantics, we formalize a general framework for data flow analyses oftccandutccprograms by abstract interpretation techniques. The concrete and abstract semantics that we propose are compositional, thus allowing us to reduce the complexity of data flow analyses. We show that our method is sound and parametric with respect to the abstract domain. Thus, different analyses can be performed by instantiating the framework. We illustrate how it is possible to reuse abstract domains previously defined for logic programming to perform, for instance, a groundness analysis fortccprograms. We show the applicability of this analysis in the context of reactive systems. Furthermore, we also make use of the abstract semantics to exhibit a secrecy flaw in a security protocol. We also show how it is possible to make an analysis which may show thattccprograms are suspension-free. This can be useful for several purposes, such as for optimizing compilation or for debugging.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference50 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification of Reaction Systems Processes;Intelligent Systems Reference Library;2023

2. A logical and graphical framework for reaction systems;Theoretical Computer Science;2021-07

3. SOS Rules for Equivalences of Reaction Systems;Functional and Constraint Logic Programming;2021

4. Dynamic Slicing for Concurrent Constraint Languages;Fundamenta Informaticae;2020-12-10

5. Enhancing Reaction Systems: A Process Algebraic Approach;The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3