Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways' response to oxidative stress in weaned piglets

Author:

Zhu Lihui,Cai Xuan,Guo Qi,Chen Xiaolian,Zhu Suwen,Xu Jianxiong

Abstract

N-acetyl cysteine (NAC) has been widely used for preventing reactive oxygen species-induced damage. However, little is known as to whether dietary NAC supplementation would alleviate intestinal injury in weaned piglets. The present study evaluated the effect of NAC on enterocyte apoptosis and intracellular signalling pathways' response to weaning stress. The control piglets were normally suckling, and piglets in the weaning and NAC groups were fed the basal diet and basal+NAC diet from 14 to 25 d of age, respectively. Compared with the control piglets, weaning increased cortisol concentrations (P< 0·05), decreased superoxide dismutase and glutathione peroxidase activities (P< 0·05), increased malondialdehyde content (P< 0·05) in serum and enhanced enterocyte apoptosis index (AI) and concentrations of caspase-3, caspase-8 and caspase-9 (P< 0·05). Gene expression analyses indicated that weaning induced apoptosis via Fas signalling and mitochondrial pathways in weaned piglets. Dietary NAC supplementation decreased (P< 0·05) cortisol concentrations and the AI, increased (P< 0·05) antioxidant status in serum and alleviated histopathological changes in the intestine. It also inhibited Fas, caspase-3, caspase-8 and integrin αvβ6 (αvβ6) gene expressions in the NAC-treated piglets. However, no significant decrease (P>0·10) in caspase-3, caspase-8 and caspase-9 concentrations was observed in the NAC group compared with the weaning group. In conclusion, weaning may induce enterocyte apoptosis via the activation of Fas-dependent and mitochondria-dependent apoptosis. Although NAC had no effect on caspase concentrations, it was clearly beneficial for preserving morphological integrity in weaned piglets via the regulation of cell apoptosis and the inhibition of Fas-dependent apoptosis and αvβ6 expression.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3