Effect of a Multi-Strain Probiotic on Growth Performance, Lipid Panel, Antioxidant Profile, and Immune Response in Andaman Local Piglets at Weaning

Author:

Sarkar Gopal1ORCID,Mondal Samiran1ORCID,Bhattacharya Debasis2,Ponraj Perumal2,Sawhney Sneha2,Bala Prokasananda2,Chakraborty Dibyendu3,Sunder Jai2,De Arun Kumar2ORCID

Affiliation:

1. Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India

2. Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair 744101, India

3. Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, India

Abstract

This study aimed to investigate the role of a multi-strain probiotic compound containing Bacillus mesentericus, Bacillus coagulans, Enterococcus faecalis, and Clostridium butyricum as an in-feed zinc oxide (ZnO) alternative in growth performance, diarrhea incidence, antioxidant profile, lipid panel, stress, and immunity in piglets at weaning. Seventy-two piglets weaned at 27 ± 1 day were divided randomly into three groups with four replicates of six piglets each: (i) a negative control group (WC) fed only a basal diet, (ii) a probiotic group (WB) fed a basal diet with the current probiotic formulation, and (iii) a positive control (PC) group fed a basal diet with 2500 mg/kg ZnO. The experiment was conducted for 28 days. Probiotic supplementation showed a positive effect on growth performance and reduced the diarrhea rate. The mean body weight of the piglets in the WB and PC groups was significantly higher than that of piglets in the WC group (14.88 ± 0.12, 14.97 ± 0.13 vs. 13.80 ± 0.06 kg; p ≤ 0.001). The addition of probiotic to the diet improved the lipid panel; the WB group showed a significantly higher level of high-density lipoprotein cholesterol (mg/dL) (32.67 ± 0.85 in WB vs. 12.48 ± 0.76 in WC; p ≤ 0.001) and lower levels of total cholesterol (mg/dL) (59.78 ± 1.97 in WB vs. 119.11 ± 2.12 in WC; p ≤ 0.001) and low-density lipoprotein cholesterol (mg/dL) (17.90 ± 1.12 in WB vs. 69.10 ± 3.37 in WC; p ≤ 0.001) compared with the negative control group. Moreover, probiotic supplementation enhanced the antioxidant defense system and provided protection from oxidative damage by increasing the concentrations of serum catalase, glutathione-S-transferase, and superoxide dismutase and by decreasing the concentrations of serum malonyldialdehyde and total nitric oxide. Heat shock proteins and other stress markers, such as serum cortisol, were reduced in the probiotic-fed group. The probiotic group also displayed higher levels of serum IgG and IgM at all time points and higher IgA on day 28 compared with the negative control group. Altogether, these results indicate that feeding with the currently used multi-strain probiotic formulation minimizes weaning stress, thereby improving the growth performance, antioxidant profile, lipid panel, and systemic and mucosal immunity. Therefore, multi-strain probiotic compounds may be used to replace ZnO in weaned piglets.

Funder

“All India Coordinated Research Project on Pig”

Indian Council of Agricultural Research, New Delhi, India

the National Bank for Agriculture and Rural Development (NABARD), Port Blair, Andaman and Nicobar Islands, India

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3