Five-component model validation of reference, laboratory and field methods of body composition assessment

Author:

Tinsley Grant M.ORCID

Abstract

AbstractThis study reports the validity of body fat percentage (BF%) estimates from several commonly employed techniques as compared with a five-component (5C) model criterion. Healthy adults (n 170) were assessed by dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP), multiple bioimpedance techniques and optical scanning. Output was also used to produce a criterion 5C model, multiple variants of three- and four-component models (3C; 4C) and anthropometry-based BF% estimates. Linear regression, Bland–Altman analysis and equivalence testing were performed alongside evaluation of the constant error (CE), total error (TE), se of the estimate (SEE) and coefficient of determination (R2). The major findings were (1) differences between 5C, 4C and 3C models utilising the same body volume (BV) and total body water (TBW) estimates are negligible (CE ≤ 0·2 %; SEE < 0·5 %; TE ≤ 0·5 %; R2 1·00; 95 % limits of agreement (LOA) ≤ 0·9 %); (2) moderate errors from alternate TBW or BV estimates in multi-component models were observed (CE ≤ 1·3 %; SEE ≤ 2·1 %; TE ≤ 2·2 %; R2 ≥ 0·95; 95 % LOA ≤ 4·2 %); (3) small differences between alternate DXA (i.e. tissue v. region) and ADP (i.e. Siri v. Brozek equations) estimates were observed, and both techniques generally performed well (CE < 3·0 %; SEE ≤ 2·3 %; TE ≤ 3·6 %; R2 ≥ 0·88; 95 % LOA ≤ 4·8 %); (4) bioimpedance technologies performed well but exhibited larger individual-level errors (CE < 1·0 %; SEE ≤ 3·1 %; TE ≤ 3·3 %; R2 ≥ 0·94; 95 % LOA ≤ 6·2 %) and (5) anthropometric equations generally performed poorly (CE 0·6– 5·7 %; SEE ≤ 5·1 %; TE ≤ 7·4 %; R2 ≥ 0·67; 95 % LOA ≤ 10·6 %). Collectively, the data presented in this manuscript can aid researchers and clinicians in selecting an appropriate body composition assessment method and understanding the associated errors when compared with a reference multi-component model.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3