Abstract
The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献