Abstract
This paper generalizes the univariate results of Chan and Tran (1989, Econometric Theory 5, 354–362) and Phillips (1990, Econometric Theory 6, 44–62) to multivariate time series. We develop the limit theory for the least-squares estimate of a VAR(l) for a random walk with independent and identically distributed errors and for I(1) processes with weakly dependent errors whose distributions are in the domain of attraction of a stable law. The limit laws are represented by functional of a stable process. A semiparametric correction is used in order to asymptotically eliminate the “bias” term in the limit law. These results are also an extension of the multivariate limit theory for square-integrable disturbances derived by Phillips and Durlauf (1986, Review of Economic Studies 53, 473–495). Potential applications include tests for multivariate unit roots and cointegration.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献