ESTIMATES OF DERIVATIVES OF (LOG) DENSITIES AND RELATED OBJECTS

Author:

Pinkse JorisORCID,Schurter KarlORCID

Abstract

We estimate the density and its derivatives using a local polynomial approximation to the logarithm of an unknown density function f. The estimator is guaranteed to be non-negative and achieves the same optimal rate of convergence in the interior as on the boundary of the support of f. The estimator is therefore well-suited to applications in which non-negative density estimates are required, such as in semiparametric maximum likelihood estimation. In addition, we show that our estimator compares favorably with other kernel-based methods, both in terms of asymptotic performance and computational ease. Simulation results confirm that our method can perform similarly or better in finite samples compared to these alternative methods when they are used with optimal inputs, that is, an Epanechnikov kernel and optimally chosen bandwidth sequence. We provide code in several languages.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Locally robust inference for non‐Gaussian SVAR models;Quantitative Economics;2024

2. Semi-parametric estimation of treatment effects in randomised experiments;Journal of the Royal Statistical Society Series B: Statistical Methodology;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3