Semi-parametric estimation of treatment effects in randomised experiments

Author:

Athey Susan12,Bickel Peter J3,Chen Aiyou45,Imbens Guido W126,Pollmann Michael7

Affiliation:

1. Graduate School of Business, Stanford University, CA,   USA

2. National Bureau of Economic Research , MA , USA

3. Department of Statistics, University of California,   Berkeley, CA , USA

4. Waymo , Mountain View, CA , USA

5. Google LLC,   Mountain View, CA , USA

6. Department of Economics, Stanford University, CA,   USA

7. Department of Economics, Duke University,   NC , USA

Abstract

Abstract We develop new semi-parametric methods for estimating treatment effects. We focus on settings where the outcome distributions may be thick tailed, where treatment effects may be small, where sample sizes are large, and where assignment is completely random. This setting is of particular interest in recent online experimentation. We propose using parametric models for the treatment effects, leading to semi-parametric models for the outcome distributions. We derive the semi-parametric efficiency bound for the treatment effects for this setting, and propose efficient estimators. In the leading case with constant quantile treatment effects, one of the proposed efficient estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to minus the second derivative of the log of the density of the potential outcomes. Our analysis also suggests an extension of Huber’s model and trimmed mean to include asymmetry.

Funder

ONR

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference53 articles.

1. On some robust estimates of location;Bickel;The Annals of Mathematical Statistics,1965

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving smallholder agriculture via video-based group extension;Journal of Development Economics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3