Contrasting seed moisture sorption behaviour between two species and the implication for seed longevity

Author:

Rezaei ShabnamORCID,Buitink Julia,Hay Fiona R.

Abstract

Abstract Understanding seed moisture desorption and adsorption isotherms is important for seed quality maintenance and better predicting seed storage lifespan. Freshly harvested oilseed rape and barley seeds were dried and then rehydrated twice. Seed equilibrium relative humidity (eRH) and moisture content (MC) were determined at different humidity levels so that two cycles of desorption and adsorption could be constructed. In addition, seeds were dried to 30% RH and then rehydrated to 50% RH for five cycles to determine whether they shift to the adsorption isotherm. Monolayer MC was determined using the Gugenheim-Anderson-de Boer model. Storage experiments were conducted for seeds equilibrated at 30, 40, 50, 60 and 70% RH for two cycles of desorption and adsorption at 45°C. Isotherm curves’ shapes were similar for oilseed rape and barley, although spanning a greater MC range in barley. The hysteresis effect was observed for oilseed rape and barley seeds when dried over silica gel at <10% RH. However, this effect was only observed for barley seeds when dried to 30% RH, but not for oilseed rape seeds. Longevity was greater for adsorbing seeds than desorbing seeds at a given eRH, however, there was no significant difference in σ (the standard deviation of the normal distribution of seed deaths over time)–MC log–log relationship. The relationship shifted for seeds on the second cycle. In conclusion, if seed lots are stored at a specific RH, reaching equilibrium by desorption or adsorption can strongly influence their longevity. Also, when seeds of different species are dried to low RH, they will respond differently to a subsequent increase in RH, which could profoundly affect their longevity.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3