Predicting the impact of increasing temperatures on seed germination among populations of Western Australian Banksia (Proteaceae)

Author:

Cochrane Anne,Hoyle Gemma L.,Yates Colin J.,Wood Jeff,Nicotra Adrienne B.

Abstract

AbstractTemperature is a significant factor influencing seed germination and for many species temperature-mediated germination cues are vital for plant persistence. Rising temperatures forecast as a result of anthropogenic climate change may have a substantial influence on the population and range dynamics of plant species. Here, we report on the thermal constraints on seed germination in natural populations of four congeneric Banksia species collected from a longitudinal climate gradient in Western Australia. We investigated whether germination niche: (1) varied between species; (2) varied among populations of each species; and (3) varied in a consistent manner reflecting the climatic gradients of seed origin. We hypothesized that species would differ and that populations from warmer sites would have a broader temperature window for germination than populations from cooler sites. Species differed in the breadth of their germination niche, but temperatures that stimulated the most rapid and complete germination were similar across all species. A sharp reduction in germination percentage occurred above the optimum temperature, which coincided with significant delays in germination relative to the optimum. The temperatures causing these declines varied among populations. Across the species, there was a significant correlation between optimum germination temperature and mean annual temperature at seed source; however, there was no relationship at the population level for individual species. These data provide insight into the vulnerability of Banksia species to climate change, with those populations that require lower temperatures for germination, or have narrower optimal ranges for germination, likely to be most vulnerable to a warming climate.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3