A rapidly retreating, marine-terminating glacier's modeled response to perturbations in basal traction

Author:

Downs JacobORCID,Johnson Jesse V.

Abstract

Abstract Upernavik Isstrøm, a marine glacier undergoing rapid retreat, is simulated by forcing a numerical model with ocean-driven melt. A review of processes driving retreat led us to hypothesize that a glacier undergoing rapid retreat may be less sensitive to perturbations in the balance of forces than a glacier that is undergoing moderate changes or a glacier in steady state. Numerical experiments suggest this is not the case, and that a system in rapid retreat is as sensitive to basal traction perturbations as a system that is near to steady state. This result is important when considering other glacier systems experiencing marine-forced retreat. While the ice–ocean interface is of primary importance, additional perturbations from meltwater-forced decoupling of the glacier from its bed continue to feature in glacier dynamics.

Funder

NSF

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3