Abstract
AbstractTidewater glaciers have been observed to experience instantaneous, stepwise increases in velocity during iceberg-calving events due to a loss of resistive stresses. These changes in stress can potentially impact tidewater glacier stability by promoting additional calving and affecting the viscous delivery of ice to the terminus. Using flow models and perturbation theory, we demonstrate that calving events and subsequent terminus readvance produce quasi-periodic, sawtooth oscillations in stress that originate at the terminus and propagate upstream. The stress perturbations travel at speeds much greater than the glacier velocities and, for laterally resisted glaciers, rapidly decay within a few ice thickness of the terminus. Consequently, because terminus fluctuations due to individual calving events tend to be much higher frequency than climate variations, individual calving events have little direct impact on the viscous delivery of ice to the terminus. This suggests that the primary mechanism by which calving events can trigger instability is by causing fluctuations in stress that weaken the ice and lead to additional calving and sustained terminus retreat. Our results further demonstrate a stronger response to calving events in simulations that include the full stress tensor, highlighting the importance of accounting for higher order stresses when developing calving parameterizations.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献