Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern Patagonia

Author:

Minowa MasahiroORCID,Schaefer MariusORCID,Skvarca Pedro

Abstract

Abstract Calving glaciers are highly sensitive to bedrock geometry near their terminus. To understand the mechanisms controlling rapid calving glaciers’ mass loss, we measured the lake topography in front of four lake-terminating glaciers in the southern Patagonian icefield. Using remotely sensed surface elevation data, we calculated flotation height and surface slope and compared those with changes in ice-front position, surface speed and surface elevation. Rapid retreat accompanied by rapid flow acceleration and ice surface steepening was observed at Glaciar Upsala from 2008–2011, and at O'Higgins and Viedma glaciers from 2016–present. Surface lowering in the lower part of Glaciar Upsala reached 30 m a−1 and was 18 m a−1 and 12 m a−1 at O'Higgins and Viedma glaciers, respectively. Near- or super-buoyant conditions were observed prior to these events, leading to gradual flow acceleration due to low effective pressure and decoupling from the bed. The super-buoyant condition and gradual acceleration imply full-thickness buoyant calving, which causes the ice front to retreat from the shallow bedrock topography with substantial flow acceleration. We conclude that the buoyancy force plays an important role in the rapid mass loss of lake-terminating glaciers in southern Patagonia.

Funder

Japan Society for the Promotion of Science

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3