Approaches to Quantitative Electron Detection in the Scanning Electron Microscope for Topographic Studies

Author:

Hejna Jan

Abstract

An electron signal in the scanning electron microscope (SEM) usually consists of contributions caused by different contrast mechanisms. The most common in practice are material and topographic contrasts. Quantification of material contrast is rather a simple matter. A backscattered electron detector placed over a specimen gives mainly material contrast which can be quantified by the use of a multichannel analyser like in the energy-dispersive x-ray spectrometry.In case of topographic contrast two problems arise. One of them is dimensional metrology, especially linewidth measurements in microelectronics, the second is reconstruction of a surface relief. The first problem needs detection conditions at which the results of SEM measurements correspond exactly with real dimensions, the second needs a signal which is related with a known formula to a local surface inclination and a procedure for converting the signal into the surface relief.Experiments in the SEM and Monte-Carlo calculations have shown that results of dimensional measurements depend on an energy of a primary beam, on a type of detected electrons (secondary electrons (SE) or backscattered electrons (BSE)) and on a type of a detector.The use of low primary beam voltages and BSE is advisable, The problem of a poor efficiency of BSE detectors at low primary beam voltages can be overcome by accelerating BSE, after they have passed through a grid rejecting SE, by high voltage applied to a scintillator in a BSE detector.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3