RESTORING CROPLAND PRODUCTIVITY AND PROFITABILITY IN NORTHERN ETHIOPIAN DRYLANDS AFTER NINE YEARS OF RESOURCE-CONSERVING AGRICULTURE

Author:

ARAYA TESFAY,NYSSEN JAN,GOVAERTS BRAM,BAUDRON FRÉDÉRIC,CARPENTIER LOUISE,BAUER HANS,LANCKRIET SIL,DECKERS JOZEF,CORNELIS WIM M.

Abstract

SUMMARYLong-term in situ soil and water conservation experiments are rare in sub-Saharan Africa, particularly in Eastern Africa. A long-term experiment was conducted (2005–2013) on a Vertisol to quantify the impacts of resource-conserving agriculture (RCA) on runoff, soil loss, soil fertility and crop productivity and economic profitability in northern Ethiopia. Two RCA practices were developed from traditional furrow tillage practices: (i) derdero+ (DER+) and terwah+ (TER+). DER+ is a furrow and permanent raised bed planting system, tilled once at planting time by refreshing the furrow and 30% of crop residue is retained. TER+ is ploughed once at planting, furrows are made at 1.5 m intervals and 30% crop residue is retained. The third treatment was a conventional tillage (CT) with a minimum of three tillage operations and complete removal of crop residues. Wheat, teff, barley and grass pea crops were grown in rotation. Runoff, and soil and nutrient loss were measured in plastic sheet-lined collector trenches. Significantly different (P < 0.05) runoff coefficients (%) and soil losses (t ha−1) averaged over 9 yrs were 14 and 3, 22 and 11 and 30 and 17 for DER+, TER+ and CT, respectively. Significant improvements in crop yield and gross margin were observed after a period of three years of cropping This study demonstrated that RCA systems in semi-arid agro-ecosystems constitute a field rainwater conservation and soil fertility improvement strategy that enhances crop productivity and economic profitability. Adoption of RCA systems (DER+ and TER+) in the study area requires further work to improve smallholder farmers’ awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3