Components of Random Forests

Author:

Łuczak Tomasz,Pittel Boris

Abstract

A forest ℱ(n, M) chosen uniformly from the family of all labelled unrooted forests with n vertices and M edges is studied. We show that, like the Érdős-Rényi random graph G(n, M), the random forest exhibits three modes of asymptotic behaviour: subcritical, nearcritical and supercritical, with the phase transition at the point M = n/2. For each of the phases, we determine the limit distribution of the size of the k-th largest component of ℱ(n, M). The similarity to the random graph is far from being complete. For instance, in the supercritical phase, the giant tree in ℱ(n, M) grows roughly two times slower than the largest component of G(n, M) and the second largest tree in ℱ(n, M) is of the order n for every M = n/2 +s, provided that s3n−2 → ∞ and s = o(n), while its counterpart in G(n, M) is of the order n2s−2 log(s3n−2) ≪ n.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference39 articles.

1. On the Altitude of Nodes in Random Trees

2. Polymerisation processes with intrapolymer bonding. I. one type of unit

3. A direct evaluation of the equilibrium distribution for a polymerization process;Whittle;Theory Probab. Appl.,1981

4. Local limit theorems and large deviation for stable limit distributions;Tkachuk;USSR Ser. Fiz.-Mat. Nauk,1973

5. Some remarks on the theory of trees;Rényi;Publ. Math. Inst. Hungar. Acad. Sci.,1959

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On negative correlation of Arboreal Gas for specific parameters;Statistics & Probability Letters;2024-10

2. Gibbs partitions: A comprehensive phase diagram;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01

3. Percolation transition for random forests in $d\geqslant 3$;Inventiones mathematicae;2024-05-15

4. Asymptotic enumeration and limit laws for multisets: The subexponential case;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-02-01

5. Code Smell Detection Research Based on Pre-training and Stacking Models;IEEE Latin America Transactions;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3