Percolation transition for random forests in $d\geqslant 3$

Author:

Bauerschmidt Roland,Crawford Nicholas,Helmuth Tyler

Abstract

AbstractThe arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $\beta >0$ β > 0 per edge. It arises as the $q\to 0$ q 0 limit of the $q$ q -state random cluster model with $p=\beta q$ p = β q . We prove that in dimensions $d\geqslant 3$ d 3 the arboreal gas undergoes a percolation phase transition. This contrasts with the case of $d=2$ d = 2 where no percolation transition occurs.The starting point for our analysis is an exact relationship between the arboreal gas and a non-linear sigma model with target space the fermionic hyperbolic plane $\mathbb{H}^{0|2}$ H 0 | 2 . This latter model can be thought of as the 0-state Potts model, with the arboreal gas being its random cluster representation. Unlike the standard Potts models, the $\mathbb{H}^{0|2}$ H 0 | 2 model has continuous symmetries. By combining a renormalisation group analysis with Ward identities we prove that this symmetry is spontaneously broken at low temperatures. In terms of the arboreal gas, this symmetry breaking translates into the existence of infinite trees in the thermodynamic limit. Our analysis also establishes massless free field correlations at low temperatures and the existence of a macroscopic tree on finite tori.

Publisher

Springer Science and Business Media LLC

Reference81 articles.

1. Adams, S., Buchholz, S., Kotecký, R., Müller, S.: Cauchy-Born Rule from Microscopic Models with Non-convex Potentials (2019). Preprint, arXiv:1910.13564

2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

3. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

4. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys. 111(4), 505–531 (1987)

5. Aizenman, M., Burchard, A., Newman, C.M., Wilson, D.B.: Scaling limits for minimal and random spanning trees in two dimensions. In: Statistical Physics Methods in Discrete Probability, Combinatorics, and Theoretical Computer Science, Princeton, NJ, 1997, vol. 15, pp. 319–367 (1999)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3