Abstract
Let G = G(d) be a random graph with a given degree sequence d, such as a random r-regular graph where r ≥ 3 is fixed and n = |G| → ∞. We study the percolation phase transition on such graphs G, i.e., the emergence as p increases of a unique giant component in the random subgraph G[p] obtained by keeping edges independently with probability p. More generally, we study the emergence of a giant component in G(d) itself as d varies. We show that a single method can be used to prove very precise results below, inside and above the ‘scaling window’ of the phase transition, matching many of the known results for the much simpler model G(n, p). This method is a natural extension of that used by Bollobás and the author to study G(n, p), itself based on work of Aldous and of Nachmias and Peres; the calculations are significantly more involved in the present setting.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献