Abstract
Abstract
We show joint convergence of the Łukasiewicz path and height process for slightly supercritical Galton–Watson forests. This shows that the height processes for supercritical continuous-state branching processes as constructed by Lambert (2002) are the limit under rescaling of their discrete counterparts. Unlike for (sub-)critical Galton–Watson forests, the height process does not encode the entire metric structure of a supercritical Galton–Watson forest. We demonstrate that this result is nonetheless useful, by applying it to the configuration model with an independent and identically distributed power-law degree sequence in the critical window, of which we obtain the metric space scaling limit in the product Gromov–Hausdorff–Prokhorov topology, which is of independent interest.
Publisher
Cambridge University Press (CUP)