Author:
PERRETT THOMAS J.,THOMASSEN CARSTEN
Abstract
We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献