Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid

Author:

BILLANT PAUL,CHOMAZ JEAN-MARC

Abstract

This paper investigates the three-dimensional stability of a Lamb–Chaplygin columnar vertical vortex pair as a function of the vertical wavenumber kz, horizontal Froude number Fh, Reynolds number Re and Schmidt number Sc. The horizontal Froude number Fh (Fh = U/NR, where U is the dipole travelling velocity, R the dipole radius and N the Brunt–Väisälä frequency) is varied in the range [0.033, ∞[ and three set of Reynolds-Schmidt numbers are investigated: {Re = 10 000, Sc = 1}, Re = 1000, Sc = 1}, {Re = 200, Sc = 637}. In the whole range of Fh and Re, the dominant mode is always antisymmetric with respect to the middle plane between the vortices but its physical nature and properties change when Fh is varied. An elliptic instability prevails for Fh > 0.25, independently of the Reynolds number. It manifests itself by the bending of each vortex core in the opposite direction to the vortex periphery. The growth rate of the elliptic instability is reduced by stratification effects but its spatial structure is almost unaffected. In the range 0.2 < Fh < 0.25, a continuous transition occurs from the elliptic instability to a different instability called zigzag instability. The transitional range Fhc = 0.2–0.25 is in good agreement with the value Fh = 0.22 at which the elliptic instability of an infinite uniform vortex is suppressed by the stratification. The zigzag instability dominates for Fh [les ] 0.2 and corresponds to a vertically modulated bending and twisting of the whole vortex pair. The experimental evidence for this zigzag instability in a strongly stratified fluid reported in the first part of this study (Billant & Chomaz 2000a) are therefore confirmed and extended. The numerically calculated wavelength and growth rate for low Reynolds number compare well with experimental measurements.The present numerical stability analysis fully agrees with the inviscid asymptotic analysis carried out in the second part of this investigation (Billant & Chomaz 2000b) for small Froude number Fh and long wavelength. This confirms that the zigzag instability is related to the breaking of translational and rotational invariances. As predicted, the growth rate of the zigzag instability is observed to be self-similar with respect to the variable Fhkz, implying that the maximum growth rate is independent of Fh while the most amplified dimensional wavenumber varies with N/U. The numerically computed eigenmode and dispersion relation are in striking agreement with the analytical results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3