Numerical simulation of the wake of a towed sphere in a weakly stratified fluid

Author:

DOMMERMUTH DOUGLAS G.,ROTTMAN JAMES W.,INNIS GEORGE E.,NOVIKOV EVGENY A.

Abstract

We present some preliminary results from using large-eddy simulation to compute the late wake of a sphere towed at constant speed through a non-stratified and a uniformly stratified fluid. The wake is computed in each case for two values of the Reynolds number: Re = 104, which is comparable to that used in laboratory experiments, and Re = 105. An important aspect of the simulation is the use of an iterative procedure to relax the initial turbulence field so that the normal and shear turbulent stresses are properly correlated and the turbulent production and dissipation are in equilibrium. For the lower Reynolds number our results compare well with existing laboratory experimental results. For the higher Reynolds number we find that even though the turbulence is more developed and the wake contains finer structure, most of the similarity properties of the wake are unchanged compared with those observed at the lower Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3