An Assessment of Second Moment Closure Modeling for Stratified Wakes Using Direct Numerical Simulations Ensembles

Author:

Jain Naman1,Huang Xinyi L. D.1,Li Jiaqi J. L.1,Yang Xiang I. A.1ORCID,Kunz Robert1

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University , University Park, PA 16802

Abstract

Abstract Buoyant wakes encountered in the ocean environment are characterized by high Reynolds (Re) and Froude (Fr) numbers, leading to significant space–time resolution requirements for turbulence resolving CFD models (i.e., direct numerical simulations (DNS), large eddy simulations (LES)). Therefore, Reynolds-averaged Navier–Stokes (RANS) based models are attractive for these configurations. The inherently complex dynamics of stratified systems render eddy-viscosity-based modeling inappropriate. RANS second-moment closure (SMC) based modeling is more suitable because it accounts for flow anisotropy by solving the transport equations of important second-moment terms. Accordingly, eleven transport equations are solved at the SMC level, and a range of submodels are implemented for diffusion, pressure strain and scrambling, and dissipation terms. This work studies nonstratified and stratified towed wakes using SMC and DNS. Submodels in the SMC are evaluated in terms of how well their exact Reynolds averaged form impacts the accuracy of the full RANS closure. An ensemble average of 40 and 80–100 DNS realizations are required and conducted for these temporally evolving nonstratified and stratified wakes, respectively, to obtain converged higher-order statistics. SMC over-predicts wake height by over a factor of 2, and under-predicts defect velocity, wake width, and turbulent kinetic and potential energies by factors ranging from 1.3 to 3.5. Also, SMC predicts a near isotropic decay of normal Reynolds stresses (a33→−0.25), in contrast to the anisotropic decay (a33→−0.64) returned by DNS. The DNS data also provide important insights related to the inaccuracy of the dissipation rate isotropy assumption and the non-negligible contribution of pressure diffusion terms. These results lead to several important recommendations for SMC modeling improvement.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3