Self-similar viscous gravity currents: phase-plane formalism

Author:

Gratton Julio,Minotti Fernando

Abstract

A theoretical model for the spreading of viscous gravity currents over a rigid horizontal surface is derived, based on a lubrication theory approximation. The complete family of self-similar solutions of the governing equations is investigated by means of a phase-plane formalism developed in analogy to that of gas dynamics. The currents are represented by integral curves in the plane of two phase variables, Z and V, which are related to the depth and the average horizontal velocity of the fluid. Each integral curve corresponds to a certain self-similar viscous gravity current satisfying a particular set of initial and/or boundary conditions, and is obtained by solving a first-order ordinary differential equation of the form dV/dZ = f(Z, V), where f is a rational function. All conceivable self-similar currents can thus be obtained. A detailed analysis of the properties of the integral curves is presented, and asymptotic formulae describing the behaviour of the physical quantities near the singularities of the phase plane corresponding to sources, sinks, and current fronts are given. The derivation of self-similar solutions from the formalism is illustrated by several examples which include, in addition to the similarity flows studied by other authors, many other novel ones such as the extension to viscous flows of the classical problem of the breaking of a dam, the flows over plates with borders, as well as others. A self-similar solution of the second kind describing the axisymmetric collapse of a current towards the origin is obtained. The scaling laws for these flows are derived. Steady flows and progressive wave solutions are also studied and their connection to self-similar flows is discussed. The mathematical analogy between viscous gravity currents and other physical phenomena such as nonlinear heat conduction, nonlinear diffusion, and ground water motion is commented on.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Maxworthy, T. 1983 Gravity currents with variable inflow.J. Fluid Mech. 128,247–257.

2. Grundy, R. E. & Rottman, J. W. 1985 The approach to self-similarity of solutions of the shallow-water equations representing gravity current releases.J. Fluid Mech. 156,39–53.

3. Fay, J. A. 1969 The spread of oil slicks on a calm sea. In Oil on the Sea (ed. D. P. Hoult ),pp.33–63.Plenum.

4. Buckmaster, J. 1977 Viscous sheets advancing over dry beds.J. Fluid Mech. 81,735–756.

5. Huppert, H. E. 1986 The intrusion of fluid mechanics into geology.J. Fluid Mech. 173,557–594.

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3