An experimental study of the effects of Prandtl number on thermal convection in a rotating, differentially heated cylindrical annulus of fluid

Author:

Fein Jay S.,Pfeffer Richard L.

Abstract

This paper presents the results of experimental studies of the behaviour of different fluids (mercury, Pr = 0·0246; water, Pr = 7·16; and 5 cS silicone oil, Pr = 63) when each is contained in a rotating cylindrical annulus and subjected to an imposed radial temperature difference across the annulus. The results are summarized in the form of two-parameter regime diagrams (thermal Rossby number RoTvs. Taylor number Ta) at different Prandtl numbers Pr. The fluids are in contact above and below with rigid insulating boundaries. The range of thermal Rossby and Taylor numbers surveyed is 10−3 < RoT < 10, 105 < Ta < 109.The regime diagram for water with a rigid upper lid in contact with the fluid resembles in certain respects the more familiar regime diagram for water with a free upper surface obtained by Fultz (1956) and by Fowlis & Hide (1965). Significant differences do, however, occur and are discussed in a separate paper by Fein (1973). The regime diagram for silicone oil possesses no lower symmetric regime within the range of thermal Rossby and Taylor numbers surveyed; that for mercury possesses no upper symmetric regime within the range surveyed. In mercury, turbulence is observed at high Rossby numbers. An experimental traverse across the regime diagram in which the imposed temperature difference is held constant at ΔT = 5 °C and the rotation rate Ω is changed monotonically reveals a highly conductive temperature structure in mercury and a highly convective temperature structure in both water and silicone oil. The regular wave regime, which appears at all three Prandtl numbers, is found to shift towards higher Taylor and Rossby numbers with decreasing Prandtl number. As a result, a single point in two-dimensionless-parameter space (RoT = 5 × 10−1, Ta = 1 × 106) lies in the upper symmetric regime for 5 cS silicone oil (Pr = 63), in the regular wave regime for water (Pr = 7·16) and in the lower symmetric regime for mercury (Pr = 0·0246).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Mason, P. J. 1976 Baroclinic waves in a container with sloping end walls.Phil. Trans. A (in press).

2. Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid Adv. in Phys. 24,47–100.

3. Hide, R. 1969 Some laboratory experiments on free thermal convection in a rotating fluid subject to a horizontal temperature gradient and their relation to the theory of the global atmospheric circulation. The Global Circulation of the Atmosphere (ed. G. A. Corby ),pp.196–221.London: Roy. Met. Soc.

4. Hide, R. 1958 An experimental study of thermal convection in a rotating liquid.Phil. Trans A250,441–478.

5. Hide, R. 1953 Some experiments on thermal convection in a rotating liquid Quart. J. Roy. Met. Soc. 79,161.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3