Buoyancy-driven crack propagation: the limit of large fracture toughness

Author:

ROPER S. M.,LISTER J. R.

Abstract

We study steady vertical propagation of a crack filled with buoyant viscous fluid through an elastic solid with large effective fracture toughness. For a crack fed by a constant flux Q, a non-dimensional fracture toughness K=Kc/(3μQm3/2)1/4 describes the relative magnitudes of resistance to fracture and resistance to viscous flow, where Kc is the dimensional fracture toughness, μ the fluid viscosity and m the elastic modulus. Even in the limit K ≫ 1, the rate of propagation is determined by viscous effects. In this limit the large fracture toughness requires the fluid behind the crack tip to form a large teardrop-shaped head of length O(K2/3) and width O(K4/3), which is fed by a much narrower tail. In the head, buoyancy is balanced by a hydrostatic pressure gradient with the viscous pressure gradient negligible except at the tip; in the tail, buoyancy is balanced by viscosity with elasticity also playing a role in a region within O(K2/3) of the head. A narrow matching region of length O(K−2/5) and width O(K−4/15), termed the neck, connects the head and the tail. Scalings and asymptotic solutions for the three regions are derived and compared with full numerical solutions for K ≤ 3600 by analysing the integro-differential equation that couples lubrication flow in the crack to the elastic pressure gradient. Time-dependent numerical solutions for buoyancy-driven propagation of a constant-volume crack show a quasi-steady head and neck structure with a propagation rate that decreases like t−2/3 due to the dynamics of viscous flow in the draining tail.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3