Abstract
We study steady vertical propagation of a crack filled with buoyant viscous fluid through an elastic solid with large effective fracture toughness. For a crack fed by a constant flux Q, a non-dimensional fracture toughness K=Kc/(3μQm3/2)1/4 describes the relative magnitudes of resistance to fracture and resistance to viscous flow, where Kc is the dimensional fracture toughness, μ the fluid viscosity and m the elastic modulus. Even in the limit K ≫ 1, the rate of propagation is determined by viscous effects. In this limit the large fracture toughness requires the fluid behind the crack tip to form a large teardrop-shaped head of length O(K2/3) and width O(K4/3), which is fed by a much narrower tail. In the head, buoyancy is balanced by a hydrostatic pressure gradient with the viscous pressure gradient negligible except at the tip; in the tail, buoyancy is balanced by viscosity with elasticity also playing a role in a region within O(K2/3) of the head. A narrow matching region of length O(K−2/5) and width O(K−4/15), termed the neck, connects the head and the tail. Scalings and asymptotic solutions for the three regions are derived and compared with full numerical solutions for K ≤ 3600 by analysing the integro-differential equation that couples lubrication flow in the crack to the elastic pressure gradient. Time-dependent numerical solutions for buoyancy-driven propagation of a constant-volume crack show a quasi-steady head and neck structure with a propagation rate that decreases like t−2/3 due to the dynamics of viscous flow in the draining tail.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献