Dike volume derived from seismicity as a gauge of fracture toughness and propagation dynamics

Author:

Konstantinou K. I.

Abstract

AbstractThe temporal evolution of dike volume can help elucidate its propagation dynamics, however, such an estimation is possible only when there are geodetic observations available along the dike path. Here it is shown that dike volume history during eight eruptions can be reconstructed from seismic moment release using high resolution earthquake catalogs. The critical volume needed for each dike to reach the surface is simulated and compared to the accumulated volume prior to eruption in order to infer fracture toughness, a measure of resistance to fracture. It is found that fracture toughness varies between 123–833 MPa m 1/2, with larger values corresponding to longer dikes. Resistance to fracture dominates over viscous dissipation when the dikes propagate through unfractured heterogeneous material with large rigidity contrast, or when there is dike segmentation. These results can be utilized for real time monitoring of dike growth, forecasting eruption volume, and for constraining analog or numerical models of dike propagation.

Funder

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3