A Herschel–Bulkley model for mud flow down a slope

Author:

HUANG XIN,GARCÍA MARCELO H.

Abstract

The spreading and sediment deposit of a two-dimensional, unsteady, laminar mud flow from a constant-volume source on a relatively steep slope is studied theoretically and experimentally. The mud under consideration has the rheological properties of a Herschel–Bulkley fluid. The flow is of low-Reynolds-number type and has a well-formed wave front moving a substantial distance downslope. Due to the nonlinear rheological characteristics, a set of nonlinear partial differential equations is needed for this transient problem. Depth-integrated continuity and momentum equations are derived by applying von Kármán's momentum integral method. A matched-asymptotic perturbation method is implemented analytically to get asymptotic solutions for both the outer region away from, and the inner region near, the wave front. The outer solution gives accurate results for spreading characteristics, while the inner solution, which is shown to agree well with experimental results of Liu & Mei (1989) for a Bingham fluid, predicts fairly well the free-surface profile near the wave front. A composite solution uniformly valid over the whole spreading length is then achieved through a matching of the inner and outer solutions in an overlapping region. The range of accuracy of the solution and the size of the inner and overlapping regions are quantified by physical scaling analyses. Rheological and dynamic measurements are obtained through laboratory experiments. Theoretical predictions are compared with experimental results, showing reasonable agreement. The impact of shear thinning on the runout characteristics, free-surface profiles and final deposit of the mud flow is examined. A mud flow with shear thinning spreads beyond the runout distance estimated by a Bingham model, and has a long and thin deposit.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 256 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3